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An approach based on the paradigm of self-organized criticality is proposed for experimental investigation
and theoretical modeling of software evolution. The dynamics of modifications is studied for three free, open
source programsMOZILLA , FREE-BSD, and EMACS using the data from version control systems. Scaling laws
typical for self-organized criticality found. A model of software evolution presenting the natural selection
principle is proposed. Results of numerical and analytical investigation of the model are presented. They are in
good agreement with data collected for real-world software.
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Basic self-organization mechanisms of complex systems
in nature have been intensively studied in recent years. The
paradigm of self-organized criticality(SOC) proposed in the
pioneering paper of Bak, Tang, and Wiesenfeld[1] appears to
be most fruitful here. SOC dynamics is characterized by ava-
lanchelike changes of the system state with power law sta-
tistics of the avalanche growth. The main feature of the SOC
regime is that it is an attractor of the system dynamics ap-
proached without any fine-tuning of control parameters.

Studies of fossil records have shown that biological evo-
lution is a strong nonequilibrium process with long periods
of stasis interrupted by avalanches of large changes in the
biosphere. This is a main point of the punctuated equilibrium
concept of biological evolution suggested by Gould and El-
dredge[2,3]. A quantitative analysis of paleontological dates
revealed scaling manifested in power laws of avalanche dis-
tributions in the extinction of species[4,5]. Therefore bio-
logical evolution can be considered as a kind of SOC dynam-
ics. This has been demonstrated by Bak and Sneppen in the
proposed model of Darwinian selection in ecosystems[6].
The development of computer science and engineering cre-
ated a “virtual biosphere” with specific evolution laws of
“virtual species”—computer programs. In this paper we pro-
pose an approach to studying software evolution in the
framework of the SOC concept.

The “life” of a large computer program is a natural evo-
lutionary process. During its creation the program often un-
dergoes multiple internal reorganizations. New devices and
platforms are supported, new features added, system tuning
performed, erroneous code corrected, and a large number of
cosmetic changes go on during the development of any pro-
gram [7,8]. Despite the fact that the first papers on software
evolution study are now decades old, universal mechanisms
of computer program evolution are unclear. Most of the ex-
isting research methods in this area are based on the assump-
tion that estimates of possible changes in a program can be
obtained without taking into account the underlying dynami-
cal laws creating this system[9,10]. In a multitude of papers
authors propose statistical methods predicting the number of
defects in a program using some kind of metrics describing
complexity, size, volume, etc.[11,12].

From our point of view the main disadvantage of such an
approach is that even the best static metric forecasting the

number of improvements to be made in a computer program
corresponding to a given specification becomes useless if the
specification changes in time. Our approach can be consid-
ered as an elaboration of a prototype for dynamical metrics
based on the use of characteristics of the SOC universality
class of the system.

There are many phenomenological works about software
evolution. Lehman’s laws suggest that as a system grows in
size, it becomes increasingly difficult to add new code unless
explicit steps are taken to reorganize the overall design
[13,14]. Some systems have been examined both at the sys-
tem level and within top-level subsystems. It has been noted
that subsystems can behave quite differently from the system
as a whole[9,10]. Good metaphors such as “code decay”
have been proposed to describe the continuous process that
makes software more brittle over time[8,15]. Thus software
evolution has many similar features to the evolution of bio-
logical species, and one can expect that evolution of large
computer programs has a physical background presented by
some class of universality of SOC dynamics.

To study software evolution processes it is necessary to
have information about the state of the system in different
moments of time. The usual sources of such data are various
versions or releases of a product[9,10,13]. Unfortunately, the
number of releases rarely exceeds a couple of tens. This fact
significantly decreases the possibility of studying the evolu-
tion of programs. Better sources of information about
changes in computer programs are version control systems.
One of them is the Concurrent Versions System(CVS). It
keeps information about changes happening in short time
intervals.

Using the CVS in our work, we studied the histories of
three software projects: theMOZILLA web browser, theFREE-

BSD operating system, and the GnuEMACS text editor
[16–18]. For each of these projects we analyzed only files
written in the basic project language. These areC11 for
MOZILLA , C for FREE-BSD, andLISP for EMACS. Header files
for C and C11 were not studied. The total amounts of pro-
cessed files are approximately 9000, 11 000, and 900 for
MOZILLA , FREE-BSD, andEMACS. The total lengths of Revi-
sion Control System files are 13107, 13107, and 23106

lines. The total volume of all three repositories(including not
only files of basic languages, but all files) exceeds 2 gi-
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gabytes. Due to some resource limitations only part of the
FREE-BSD CVS storage was processed. The histories of all
three projects are stored under control of the CVS and were
publicly available during our research period from the corre-
sponding internet servers[16–18].

For each change of each file an amountD of deleted lines
and an amountA of added lines were collected. Empty lines
and comments were collected together with the rest of the
data. The number of lines in the very first version of each file
was not counted. DistributionsPsAd and PsDd were evalu-
ated for these two arraysAi andDi. As an example the data
for FREE-BSDare shown in Figs. 1 and 2 on a common log-
log scale(logx=log10x). Results forEMACS andMOZILLA are
similar. One can see that power functions are accurate ap-
proximations for PsAd and PsDd :PsAd,Ama, PsDd,Dmd.
The values of the exponents are the following:FREE-BSD,
ma=−1.44±0.02,md=−1.48±0.02; MOZILLA , ma=
−1.43±0.02,md=−1.47±0.02; EMACS, ma=
−1.39±0.03,md=−1.49±0.04. These scaling laws can be
considered as a manifestation of SOC in the evolution of
software.

One important notion being used in the description of
SOC dynamics is the avalanche. The SOC process can be
presented as a consequence of metastable states interrupted
by avalanchelike changes in the system. For evolution of
computer programs a close analog of the avalanche is the set
of changes from version to version. We see that the ava-
lanche statistic in the evolution of software is described by
power functions with nontrivial exponents. The universality

of SOC dynamical mechanisms allows one to hope that a
simple “holistic” model can be constructed for its quantita-
tive description[19]. To realize this idea for software evolu-
tion modeling we use the following assumptions. The pecu-
liarity of software changes is that a programmer cannot
modify a program at different points simultaneously(at least
using a traditional development tool). The point of the
changes is characterized as the “weakest” one in the program
text: a programmer has some subjective estimation of parts
of a program and makes changes in a place that is estimated
as extremely nonsatisfactory. If a change is made at some
point, corresponding changes must be made in some other
places, i.e., in the program there is a coordination structure
of its elements. We suppose that changes in the program
cannot make its size less than some minimal one.

We formulate the model presenting this concept as fol-
lows. The computer program as a system constitutes a se-
quence of elements—lines of code. At time pointt the ith
line is characterized by a numberbistd , 0,bistd,1, repre-
senting its “fitness” in the program text or a barrier in respect
to change in future stages of evolution. The state of the sys-
tem of N elements is fully given by the set of barriersBstd
=hbistd , i =1,2,… ,Nj. The evolution of the program is de-
scribed in our model as the sequence ofBstd for discrete time
pointst=0,1,2,…. The coordination structure of the program
is represented by a network of its elements, where each ele-
ment node conforms with its nearneighbors. The node having
minimal barrier is defined as the weakest unit of the system.
At each time pointt we define the setWstd containing the
weakest unit with all its neighbors. We callWstd the weakest
component at timet.

The dynamics in the model is defined in the following
way. The initial number of nodesNs0d and the minimal pos-
sible number of nodesK are supposed to be given. The initial
values of barriersbis0d are chosen at random. The stateBstd
at time pointt transforms into stateBst+1d as follows. If the
number of nodesNstd in the system is more thanK two kinds
of changes are possible. With probabilitya, the weakest unit
is deleted from the system or with probability 1−a a new
neighbor node to the weakest unit is inserted into the system.
After that the barriers of all nodes from the weakest compo-
nent Wstd are set randomly. So ifNstd.K, the size of the
system decreases or increases by 1 for one time step. If
Nstd=K, then deletion is impossible and the above described
insertion is made.

Our model is a modification of the well known simple
model of biological evolution suggested by Bak and Sneppen
[6], and its essential specific is that the number of system
elements varies in time. In our study we have considered two
versions of the model: with one-dimensional(1D) and ran-
dom neighbor(RN) coordination structure. In the 1D case
the nodes are organized into a 1D lattice with periodic
boundary conditions, and each node has two neighbors. In
the RN model, there is no fixed coordination structure in the
system, and at each time stepk random nodes are chosen as
neighbors of the weakest unit. We have considered the case
k=1 only.

An avalanche as the elementary process of complex be-
havior of a nonequilibrium dynamical system can be defined

FIG. 1. DistributionPsAd for FREE-BSD.

FIG. 2. DistributionPsDd for FREE-BSD.
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in different ways. Usually in the model of SOC dynamics,l
and transient avalanches are considered[6,20,21]. In studies
of our model we were interested mostly in transient ava-
lanches. They can be defined as follows. At the time moment
t0 the minimal barrier has the valuef0. The sequence ofS
time steps during which the minimal barrier does not exceed
f0, bminstd, f0, t0, t, t0+S, is called a transient avalanche
or just an avalanche if it finishes at the time pointt0+Swhen
the value of the minimal barrier becomes larger than
f0, bminst+Sd. f0. The distributionPsSd of the avalanche
temporal duration and the distributionPsRd of the avalanche
spatial volume are important characteristics of the type of
dynamics. For our model it is reasonable to consider two
values as characteristics of the volume of changes produced
in the system by the avalanche. One of them is the numberA
of new elements appearing in the system at the end of the
avalanche. The other is the numberD of elements disappear-
ing from the system at the end of the avalanche. In the dy-
namics of our model we studied mostly the distributions
PsSd , PsAd, andPsDd of the temporal and spatial character-
istics of avalanches.

We studied numerically the 1D and RN versions of the
model for a= 1

2. The initial size of the system was 8000
elements. The experiment went on until one million ava-
lanches were registered. We got the following results. The
PsSd , PsAd, and PsDd distributions can be sufficiently ap-
proximated by the power functionsPsSd,St , PsAd,Ama,
and PsDd,Dmd with exponents t=−1.358±0.005,ma

−1.45±0.01, andmd=−1.47±0.02 for the 1D model andt
=−1.901±0.008,ma−1.98±0.01, andmd=−2.10±0.02 for
the RN model.

For the RN model it is possible to obtain an analytical
description in the framework of the master equation formal-
ism. To do it one can use the method of construction of the
master equation proposed for analysis of SOC dynamics of
the random neighbor version of the Bak-Sneppen model
[22]. If we denote byPn,Nstd the probability that at time point
t there areN nodes in the system, andn have barriers less
thanl, where 0,l,1, then the dynamical rules of the RN
model result in the following master equation:

Pn,Nst + 1d = sa + bdN,K+1dPn,N
a std + bPn,N

d std, s1d

where b=1−a, and in terms ofm=1−l , rn,N=sn−1d / sN
−1d, andsn,N=1−rn,N the quantitiesPn,N

d std and Pn,N
a std can

be presented by the following relations:

Pn,N
a std = An+2,N−1

a Pn+2,N−1std + Bn+1,N−1
a Pn+1,N−1std

+ Cn,N−1
a Pn,N−1std + Dn−1,N−1

a Pn−1,N−1std

+ En−2,N−1
a Pn−2,N−1std + sm3dn,0 + 3lm2dn,1

+ 3l2mdn,2 + l3dn,3dP0,N−1std,

Pn,N
d std = An+2,N+1

d Pn+2,N+1std + Bn+1,N+1
d Pn+1,N+1std

+ Cn,N+1
d Pn,N+1std + smdn,0 + ldn,1dP0,N+1std,

An,N
a = m3rn,N, Bn,N

a = 3lm2rn,N + m3sn,N,

Cn,N
a = 3lm2sn,N + 3l2mrn,N, Dn,N

a = 3l2msn,N + l3rn,N,

En,N
a = l3sn,N, An,N

d = mrn,N, Bn,N
d = msn,N + lrn,N,

Cn,N
d = lsn,N.

Here, the coefficients

An,N
a , Bn,N

a , Cn,N
a , Dn,N

a , En,N
a , An,N

d , Bn,N
d ,

andEn,N
d are defined for 0,nøN. For nø0 andn.N they

are assumed to be zero. The master equation(1) enables one
to find Pn,Nstd for t.0, if the initial valuesPn,Ns0d are given.
Based on this equation one can obtain analytical results for
the characteristics of the dynamics in the RN model. With
that end in view it is convenient to use the formalism of the
generating function that appeared to be very effective for
construction of the exact solution for the master equations of
the RN version of the Bak-Sneppen model[23–26]. The dy-
namics of the RN model is more complex than that of the
Bak-Sneppen model, and solution of the master equation for
the RN model for software evolution appears to be not an
easy problem. Here, we present only the exact result for
PNstd=on=0

N Pn,Nstd, which is the probability that the system
hasN elements with barriers less thanl at time pointt. Let
us denote asNsy,ud the generating function for probabilities
PNstd :Nsy,ud=oN=K,t=0

` PNstdyN−Kut. From Eq.(1) we obtain
the following equation forNsy,ud:

Nsy,udfy − usay2 + bdg = yNsy,0d + ubfy2 − 1gNs0,ud.

It describes one-dimensional discrete diffusion with reflec-
tion and can be solved by the methods used in[23–26]. The
result has the form

Nsy,ud =
yNsy,0dsu − td + uatNst,0dsy2 − 1d

su − tdfy − usay2 + bdg

wheret=s1−Î1−4u2abd /2ua is the analytical solution of
the equationft−usat2+bdg=0 at the pointu=0. The mean
value nstd=K+oNPNstdN of the system element number at
the time point t has the following asymptotic for large
t :nstd<s2a−1dt for a.1/2, nstd<Î2t /p for a=1/2, and
if we denote bypevspodd the probability that the initial num-
ber Ns0d of nodes is even(odd), then

nstd < K + f1 + s− 1dt+Ks1 − 2ad2spev − poddg/f2s1 − 2adg

for a,1/2. The corrections to the leading terms of the
asymptotic are of the formns0d−2ab / sa2−b2d+ fstdg1std for
a.1/2, t−1/2g3std for a=1/2, and fstdg2std for a,1/2.
Here fstd=f4abgt/2/ t−3/2 andgistd , i =1, 2, 3, are bounded for
large t, i.e., there are constantsT, M such thatugistdu,M if
t.T. Since 4ab,1 for aÞ1/2, the functionfstd decreases
exponentially fast for larget.

The asymptotic behavior ofnstd demonstrates the dynami-
cal phase transition at the pointa=1/2. For a,1/2 the
volume of the system remains finite, but foraù1/2 it can
became as large as one likes. At the pointa=1/2, the dy-
namics of the system is critical.
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In the above formulated model we tried to present el-
ementary mechanisms of software changes. They are made
by a programmer locally in the place where these changes
are most needed. But a program changed in one place often
must be changed in other places in some way connected to
the first one. For example, in order to change the number of
arguments of a subroutine call, one needs to change not only
the line containing the call operator but the definition of the
subroutine also. This would lead to some subsequent changes
of all the calls to the subroutine in the whole program. If one
adds a line in which some data are read from a disk one
should add some lines to check whether the data have been
read successfully, and this in turn can require some change in
the list of modules included, which in turn can cause a name
conflict, which in turn can cause other changes, etc. Thus,
avalanchelike processes seem to be natural for modifications
of programs. The avalanche ends when all the parts of the
program code more or less satisfy some subjective and im-
plicit criterion of the programmer. Naively speaking, the pro-
gram as a whole becomes “a little bit better.” In the model it
can be presented as a process terminating when the value of
the minimal barrier becomes greater than the initial one. This

was the reason we studied transient avalanches of the self-
organization period and not thel avalanches of the station-
ary mode. The obtained statistical characteristics of ava-
lanches make it possible to conclude that SOC is the
dominating dynamical regime in the evolution of free soft-
ware. Our results demonstrate that natural selection can cre-
ate this type of “punctuated equilibrium” of such complex
“virtual beings” in the information sphere. We believe that in
the framework of the proposed approach modern methods of
investigation of SOC dynamics can be very effective for
studies of physical aspects of software evolution. Our results
could be seen also as a theoretical prerequisite for the devel-
opment of new tools and methods for advanced measures of
software engineering quality.
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